
Thinking Small to Get Big

The long tail of software

10 1000

Sex

Mp3

Britney Spears

1,000X

3%

97%

Excite Query
Distribution

10,000,000

Excite didn’t figure out how to
make a business out of 97% of

our traffic volume

Google Did. $50bn anyone?

An efficient marketplace for
advertisers to reach SMALL

audiences.

Every single iTunes song has
been bought at least once

The transformative businesses
are going to operate in and

monetize the long tail

There’s a long tail for software

In the past, the software tail
has been inaccessible.

Too hard to write.
Too expensive to write.

Too brittle once deployed.
Too expensive to market and distribute.

The focus has been on dozens
of markets of millions

Instead of millions of markets
of dozens.

Business software in the long tail.

Software’s Long Tail
Head Tail

• Fixed, stable
feature set

• Evolvable, changes
with requirements

Software’s Long TailSoftware’s Long Tail
Head Tail

• Fixed, stable
feature set

• Architected

• Evolvable, changes
with requirements

• Evolved

Software’s Long TailSoftware’s Long Tail
Head Tail

• Fixed, stable
feature set

• Architected
• Permanent

• Evolvable, changes
with requirements

• Evolved
• Disposable

Software’s Long TailSoftware’s Long Tail
Head Tail

• Fixed, stable
feature set

• Architected
• Permanent
• 100k-1M users

• Evolvable, changes
with requirements

• Evolved
• Disposable
• 1-1000 users

Software’s Long TailSoftware’s Long Tail
Head Tail

• Fixed, stable
feature set

• Architected
• Permanent
• 100k-1M users
• Big pieces

• Evolvable, changes
with requirements

• Evolved
• Disposable
• 1-1000 users
• Small pieces

Software’s Long TailSoftware’s Long Tail
Head Tail

• Fixed, stable
feature set

• Architected
• Permanent
• 100k-1M users
• Big pieces
• Monolithic

• Evolvable, changes
with requirements

• Evolved
• Disposable
• 1-1000 users
• Small pieces
• Loosely joined

Software’s Long TailSoftware’s Long Tail
Head Tail

• Fixed, stable
feature set

• Architected
• Permanent
• 100k-1M users
• Big pieces
• Monolithic
• Generic

• Evolvable, changes
with requirements

• Evolved
• Disposable
• 1-1000 users
• Small pieces
• Loosely joined
• Situated

Software’s Long TailSoftware’s Long Tail
Head Tail

• Fixed, stable
feature set

• Architected
• Permanent
• 100k-1M users
• Big pieces
• Monolithic
• Generic
• Lock-in

• Evolvable, changes
with requirements

• Evolved
• Disposable
• 1-1000 users
• Small pieces
• Loosely joined
• Situated
• Open

Software’s Long TailSoftware’s Long Tail
Head Tail

• Fixed, stable feature set,
Architected, Permanent,
100k+ users, Big pieces

• Monolithic
• Generic
• Lock-in
• Most users not

builders

• Changes with requirements,
Evolved, Disposable, 1-1000
users, Small pieces

• Loosely joined
• Situated
• Open
• Most users are

builders

Software’s Long TailSoftware’s Long Tail
Head Tail

• Fixed, stable feature set,
Architected, Permanent,
100k+ users, Big pieces

• Monolithic
• Generic
• Lock-in
• Most users not

builders
• Low-level tools

• Changes with requirements,
Evolved, Disposable, 1-1000
users, Small pieces

• Loosely joined
• Situated
• Open
• Most users are

builders
• High-level tools

Software’s Long TailSoftware’s Long Tail
Head Tail

• Fixed, stable feature set,
Architected, Permanent, 100k+
users, Big pieces

• Monolithic
• Generic
• Lock-in
• Most users not

builders
• Low-level tools
• Complex, feature bloat

• Changes with requirements,
Evolved, Disposable, 1-1000
users, Small pieces

• Loosely joined
• Situated
• Open
• Most users are

builders
• High-level tools
• Simple, few features

(but right ones)

Software’s Long TailSoftware’s Long Tail
Head Tail

These characteristics imply a
set of features…

Flexibility

• Handles structured and unstructured
data

• Easy to modify and migrate schemas

Evolvability

• Tolerant development process
• Amenable to easy changes as project

progresses

Users are builders

• Short distance between using the
app and modifying the app

• Integrated view and edit

Loosely joined, Open

• Easy to get data in and out

Simplicity, Small pieces

• Minimal object model, small number
of component types (RESTful)

High-level tools

• Rich environment (environment is
useful without even programming)

• Ala Excel

Antecedents

HyperCard

• Rich environment (stacks were useful
without scripting).

• Tolerant (data model was flexible).
• Integrated view & edit.
• Not so easy to get data in and out,

and app was not networked for group
use.

Excel

• Rich environment (spreadsheet is useful
without even calculating, much less
macros).

• Tolerant (easy to refactor).
• Integrated view & edit
• Simple data model (everything is a cell).
• Easy to get data in and out (CSV, HTTP).
• Not networked, and cell model makes it

primarily useful for numerical modeling.

Microsoft Access

• Not a rich environment (you have to
build tables before the app is useful).

• Not tolerant (hard to migrate
schemas).

• Integrated view & edit for only some
users.

• Complex data model.

Lotus Notes

• Rich environment.
• Moderately tolerant.
• Some users can be builders but

building is generally complex.
• Not easy to get data in and out.
• More complex object model.
• Not loosely joined.

Traditional Wikis

• Tolerant.
• Integrated view & edit.
• All users can be editors and creators.
• Not loosely joined.
• Inflexible data model: no structured

data.
• No programming allowed.

How do we meet the set of
required features?

Tolerant Development

• Revision control, flexible data model

Short Distance b/w Using/Editing

• Just one click!

Easy to get data in and out

• Rich standards-based methods to
access and publish data

Minimal Object Model

• Everything is a wiki page

Rich Environment

• “Degenerate" application is a wiki,
which is highly useful on its own

Backup, Notes, etc.

What enables access to the
long tail?

With iTunes, Netflix, Google,
eBay, it’s lowering cost to

address very small markets.

In Software

That trend has been happening
over time. But, it’s still not

feasible to address a market of
ten.

Software is:
Brittle

Expensive
Lowest Common Denominator

Doesn’t have to be this way

Transformations have
happened in the past

Microsoft Excel

Excel

Before
• Highly specified
• Highly technical
• 6 months or more
• Out of step with

business pace

After
• Rapidly created
• Disposable
• Single use
• Evolvable
• Far less technical

